
DR
AF
T

Prepared for
Matthias Hallgren
Pragma

Prepared by
Jinseo Kim
Jisub Kim
UlrichMyhre
Zellic

July 9, 2024

Hyperlane Starknet
Smart Contract Security Assessment

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

Contents About Zellic 5

1. Overview 5

1.1. Executive Summary 6

1.2. Goals of the Assessment 6

1.3. Non-goals and Limitations 6

1.4. Results 7

2. Introduction 7

2.1. About Hyperlane Starknet 8

2.2. Methodology 8

2.3. Scope 10

2.4. Project Overview 11

2.5. Project Timeline 12

3. Detailed Findings 12

3.1. Aggregation ISM cannot skip ISMs 13

3.2. Incorrect splitting of a number in Keccak implementation 16

3.3. Improper optimization in Keccak implementation 18

3.4. Dynamic variable size for hash parameters 20

3.5. Message incorrectly includes the size of body 22

3.6. Multisig ISM allows duplicated signatures 24

3.7. The protocol fee hook will always be reverted 26

3.8. The contractAddress type cannot use the 32-byte addressingmechanism 28

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 2 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

3.9. Input arguments in the Bytes typemay be invalid 29

3.10. Modules cannot be removed from routing ISM 31

3.11. Routing ISMwith the fallback configuration does not show fallback behavior 33

3.12. Owner address is not initialized 35

3.13. Incorrect size for fetching branches of theMerkle tree 36

3.14. Message can be sent multiple times to an untrusted recipient 37

3.15. Announcing a new storage location overwrites the previous storage location 38

3.16. Aggregation ISMmisfunctions if more than 255modules exist 39

3.17. ISM configuration ofMailboxComponent is disregarded 41

3.18. Unclear behavior of the function set_modules 44

3.19. Incorrect size of StoreFelt252Array 46

3.20. Unnecessary class function for signature conversion 48

3.21. Lack of comprehensive test suite 49

4. Discussion 50

4.1. Samemessage can be inserted into theMerkle tree hookmultiple times 51

4.2. Noncemay overflow 51

5. ThreatModel 51

5.1. Message 52

5.2. Mailbox 52

5.3. Hooks 54

5.4. Interchain Security modules 55

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 3 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

6. Assessment Results 59

6.1. Disclaimer 60

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 4 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

About Zellic Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, andmore.

Prior to Zellic, we founded the #1 CTF (competitive hacking) team ↗ worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

FormoreonZellic’s ongoing security research initiatives, checkout ourwebsite zellic.io ↗ and follow
@zellic_io ↗ on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io ↗.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 5 of 60

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

1. Overview 1.1. Executive Summary

Zellic conducted a security assessment for Pragma from June 20th to July 9th, 2024. During this
engagement, Zellic reviewed Hyperlane Starknet's code for security vulnerabilities, design issues,
and general weaknesses in security posture.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

• Couldmessage transmission betweenmultiple chains be carried out correctly?
• Couldmessage transmission be blocked?
• Could the hash result of Keccak be the samewith the result in Solidity and off chain?
• Are there any differences between the current implementation and the Solidity
implementation?

1.3. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• Hyperlane protocol implementation on other chains
• Front-end components
• Infrastructure relating to the project
• Key custody

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

During this assessment, the lackof comprehensive test suites and the limited time-frameprevented
us from fully assessing the scoped codebase and ensuring that the scoped codebase works as
intended. We discuss this in Finding 3.21. ↗.

Based on the number of severe findings uncovered during the audit, it is our opinion that the
project is not yet ready for production. We strongly advise a comprehensive reassessment before
deployment to help identify any potential issues or vulnerabilities introduced by necessary fixes or
changes. We also recommend adopting a security-focused development workflow, including (but
not limited to) augmenting the repository with comprehensive end-to-end tests that achieve 100%
branch coverage using any common, maintainable testing framework, thoroughly documenting all
function requirements, and training developers to have a security mindset while writing code.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 6 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

1.4. Results

Duringourassessmenton thescopedHyperlaneStarknetcontracts,wediscovered21findings. Five
critical issues were found. Four were of high impact, four were of medium impact, six were of low
impact, and the remaining findings were informational in nature.

Additionally, Zellic recorded its notes and observations from the assessment for Pragma's benefit in
the Discussion section (4. ↗).

Breakdown of Finding Impacts

Impact Level Count

■ Critical 5

■ High 4

■ Medium 4

■ Low 6

■ Informational 2

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 7 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

2. Introduction 2.1. About Hyperlane Starknet

Pragma contributed the following description of Hyperlane Starknet:

Hyperlane is thefirst universal andpermissionless interoperability layerdesigned for themod-
ular blockchain ecosystem. The purpose of this project is to define an implementation of the
Hyperlane protocol for chains using the Starknet stack.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
bothautomated testingandmanual review. Theseprocessescanvarysignificantlyperengagement,
but themajority of the time is spent on a thoroughmanual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic codingmistakes.Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, wemay also employ sophisticated analyzers such asmodel
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with the contracts.

Business logic errors. Business logic is the heart of any smart contract application.
We examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like unrealistic
tokenomicsordangerousarbitrageopportunities. To thebestofourabilities, timepermitting,
we also review the contract logic to ensure that the code implements the expected
functionality as specified in the platform’s design documents.

Integration risks. Several well-known exploits have not been the result of any bug within
the contract itself; rather, they are an unintended consequence of the contract's interaction
with the broader DeFi ecosystem. Time permitting, we review external interactions and
summarize the associated risks: for example, flash loan attacks, oracle price manipulation,
MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general. We look
for violations of industry best practices and guidelines and code quality standards. We
also provide suggestions for possible optimizations, such as gas optimization, upgradability
weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 8 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and
Informational.

Zellic organizes its reports such that themost important findings come first in the document, rather
thanbeing strictly orderedon impact alone. Thus,wemay sometimesemphasize an "Informational"
findinghigher thana "Low"finding. Thekeydistinction is that althoughcertain findingsmayhave the
same impact rating, their importancemay differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security impact or are
not directly related to the scoped contracts itself. These observations — found in the Discussion
(4. ↗) section of the document — may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 9 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

2.3. Scope

The engagement involved a review of the following targets:

Hyperlane Starknet Contracts

Type Cairo

Platform Starknet

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 10 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

Target hyperlane_starknet

Repository https://github.com/astraly-labs/hyperlane_starknet ↗

Version f61ee04079a7446ab4fcdaf789635d5ac4282dc8

Programs lib.cairo
interfaces.cairo
contracts/isms/pausable_ism.cairo
contracts/isms/trusted_relayer_ism.cairo
contracts/isms/noop_ism.cairo
contracts/isms/routing/domain_routing_ism.cairo
contracts/isms/routing/default_fallback_routing_ism.cairo
contracts/isms/multisig/merkleroot_multisig_ism.cairo
contracts/isms/multisig/messageid_multisig_ism.cairo
contracts/isms/multisig/validator_announce.cairo
contracts/isms/aggregation/aggregation.cairo
contracts/mailbox.cairo
contracts/libs/message.cairo
contracts/libs/multisig/message_id_ism_metadata.cairo
contracts/libs/multisig/merkleroot_ism_metadata.cairo
contracts/libs/checkpoint_lib.cairo
contracts/libs/aggregation_ism_metadata.cairo
contracts/hooks/merkle_tree_hook.cairo
contracts/hooks/libs/standard_hook_metadata.cairo
contracts/hooks/protocol_fee.cairo
contracts/client/mailboxclient_component.cairo
contracts/client/mailboxclient.cairo
utils/keccak256.cairo
utils/store_arrays.cairo

2.4. Project Overview

Zellicwas contracted to perform a security assessment for a total of 2.7 person-weeks. The assess-
ment was conducted by three consultants over the course of three calendar weeks.

Contact Information

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 11 of 60

https://github.com/astraly-labs/hyperlane_starknet

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

The following project manager was associated
with the engagement:

ChadMcDonald
EngagementManager
chad@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

Jinseo Kim
Engineer
jinseo@zellic.io ↗

Jisub Kim
Engineer
jisub@zellic.io ↗

UlrichMyhre
Engineer
unblvr@zellic.io ↗

2.5. Project Timeline

The key dates of the engagement are detailed below.

June 20, 2024 Start of primary review period

June 21, 2024 Kick-off call

July 9, 2024 End of primary review period

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 12 of 60

mailto:chad@zellic.io
mailto:jinseo@zellic.io
mailto:jisub@zellic.io
mailto:unblvr@zellic.io

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

3. Detailed Findings 3.1. Aggregation ISM cannot skip ISMs

Target aggregation_ism_metadata.cairo

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

Aggregation ISM in theHyperlaneprotocol is an ISMthat returns truewhenm-of-n ISMs return true,
where the threshold and the list of ISMs are predetermined. It is implemented in aggregation.cairo:

fn verify(self: @ContractState, _metadata: Bytes, _message: Message,) ->
bool {
let (isms, mut threshold) = self.modules_and_threshold(_message.clone());

assert(threshold != 0, Errors::THRESHOLD_NOT_SET);
let modules = self.build_modules_span();
let mut cur_idx: u8 = 0;
loop {

if (threshold == 0) {
break ();

}
if (cur_idx.into() == isms.len()) {

break ();
}
if (!AggregationIsmMetadata::has_metadata(_metadata.clone(), cur_idx))

{
cur_idx += 1;
continue;

}
let ism = IInterchainSecurityModuleDispatcher {

contract_address: *modules.at(cur_idx.into())
};

let metadata = AggregationIsmMetadata::metadata_at(_metadata.clone(),
cur_idx);

assert(ism.verify(metadata, _message.clone()),
Errors::VERIFICATION_FAILED);

threshold -= 1;
cur_idx += 1;

};
assert(threshold == 0, Errors::THRESHOLD_NOT_REACHED);

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 13 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

true
}

Aggregation ISM is expected to skip ISMs thatwill return false or revert. To implement this behavior,
it is checked if thegivenmetadata includes themetadata for the ISM, and ISMs that donot have their
metadatas are skipped.

However, the function AggregationIsmMetadata::has_metadata actually does not check the exis-
tence of themetadata:

fn has_metadata(_metadata: Bytes, _index: u8) -> bool {
match metadata_range(_metadata, _index) {

Result::Ok((_, _)) => true,
Result::Err(_) => false

}
}

// ...

fn metadata_range(_metadata: Bytes, _index: u8) -> Result<(u32, u32), u8> {
let start = _index.into() * RANGE_SIZE * 2;
let mid = start + RANGE_SIZE;
let (_, mid_metadata) = _metadata.read_u32(mid.into());
let (_, start_metadata) = _metadata.read_u32(start.into());
Result::Ok((start_metadata, mid_metadata))

}

The function has_metadata returns false if the function metadata_range returns an error. However,
the function metadata_range never returns an error; it should always return the normal result or
revert (if mid or start overflows the size of _metadata). Either way, the ISM verification will fail at
this point, although there aremore ISMs that can be checked.

Impact

M-of-n Aggregation ISMwill revert if one of the first m ISMs does not return true.

Recommendations

Consider modifying the function has_metadata in order to allow a relayer to specify ISMs to be
skipped.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 14 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

Remediation

This issue has been acknowledged by Pragma, and a fix was implemented in commit
939b0435 ↗.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 15 of 60

https://github.com/astraly-labs/hyperlane_starknet/commit/939b0435e558dbdf6f5ac22027fdf2bbe49973bf

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

3.2. Incorrect splitting of a number in Keccak implementation

Target keccak256.cairo

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

This project implements the Keccak function, which receives an array of input chunks thatwould be
concatenated and hashed. The following is the function concatenate_input, which concatenates
the given input array:

pub const FELT252_MASK:
u256 = 0xFF;

// ...

#[derive(Copy, Drop, Serde, starknet::Store, Debug, PartialEq)]
pub struct ByteData {

pub value: u256,
pub size: usize

}

// ...

fn concatenate_input(bytes: Span<ByteData>) -> ByteArray {
let mut output_string: ByteArray = Default::default();
let mut cur_idx = 0;

loop {
if (cur_idx == bytes.len()) {

break ();
}
let byte = *bytes.at(cur_idx);
if (byte.size == 32) {

// in order to store a 32-bytes entry in a ByteArray, we need to
first append the upper 1-byte part , then the lower 31-bytes part

let up_byte = (byte.value / FELT252_MASK).try_into().unwrap();
output_string.append_word(up_byte, 1);
let down_byte = (byte.value & FELT252_MASK).try_into().unwrap();
output_string.append_word(down_byte, 31);

} else {

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 16 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

output_string.append_word(byte.value.try_into().unwrap(),
byte.size);

}
cur_idx += 1;

};
output_string

}

It can be observed that the 32-byte chunk is split into two values and appended separately. This
is because the function append_word receives the values as felt types, which can only safely store
31-byte data.

The most significant byte of the 32-byte chunk is obtained by dividing the chunk by FELT256_MASK.
However, this method may result in an incorrect result in specific cases. For example, the most
significant byte of 0x01FFFF(...total 32 bytes...)FFFF is 0x01, but the result using the above
methodwould be 0x02.

Impact

This bugmay cause incorrect Keccak hash derivation, whichmay lead to the failure ofmessage dis-
patching and processing.

Recommendations

Consider changing the logic obtaining themost significant byte of the 32-byte chunk.

Remediation

This issue has been acknowledged by Pragma, and a fix was implemented in commit
d9152fc4 ↗.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 17 of 60

https://github.com/astraly-labs/hyperlane_starknet/commit/d9152fc4c31463c1dc8a77ee9bb34deccabc8ada

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

3.3. Improper optimization in Keccak implementation

Target keccak256.cairo

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

For the inputs with zero, the Keccak implementation returns the precalculated hash in order to opti-
mize in common cases:

const EMPTY_KECCAK:
u256 = 0x70A4855D04D8FA7B3B2782CA53B600E5C003C7DCB27D7E923C23F7860146D2C5;

// ...

#[derive(Copy, Drop, Serde, starknet::Store, Debug, PartialEq)]
pub struct ByteData {

pub value: u256,
pub size: usize

}

// ...

fn keccak_cairo_words64(words: Words64, last_word_bytes: usize) -> u256 {
if words.is_empty() {

return EMPTY_KECCAK;
}

// ...
}

// ...

pub fn compute_keccak(bytes: Span<ByteData>) -> u256 {
if (bytes.is_empty()) {

return keccak_cairo_words64(array![].span(), 0);
}
if (*bytes.at(0).value == 0) {

return keccak_cairo_words64(array![].span(), 0);
}
// ...

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 18 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

}

If the value field of the first element of the input array is zero, the function returns the Keccak hash
of the empty data. However, it should be noted that this optimization is incorrect, because of these
two reasons:

1. One, ByteData represents the size-byte data with value, and value can be zero in the
case the data is not zero-byte. For example, the data 0x0000 is representedwith array![
ByteData { value: 0_u256, size: 2 }].

2. Two, ByteData may contain other elements that will be concatenated and hashed to-
gether, such as array![ByteData { value: 0_u256, size: 0 }, ByteData {
value: 1_u256, size: 1 }].

Impact

This bugmay cause incorrect Keccak hash derivation, whichmay lead to the failure ofmessage dis-
patching and processing.

Recommendations

Consider adding the conditions for the optimization to be triggered.

Remediation

This issue has been acknowledged by Pragma, and fixes were implemented in the following com-
mits:

• f396498a ↗
• 81d84cae ↗

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 19 of 60

https://github.com/astraly-labs/hyperlane_starknet/commit/f396498a8885083f05a1881d487e91f45d810b49
https://github.com/astraly-labs/hyperlane_starknet/commit/81d84cae9f7e2f517311d6a61214e8b38a6d8e76

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

3.4. Dynamic variable size for hash parameters

Target checkpoint_lib.cairo, message.cairo, validator_announce.cairo

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

The digest and domain_hash functions in checkpoint_lib.cairo, the format_message function in
message.cairo, and the domain_hash function in validator_announce.cairo try to follow the be-
havior of abi.encodePacked by appending the ByteData struct with the size calculated with the
u{64,256}_word_size:

fn format_message(_message: Message) -> (u256, Message) {
let sender: felt252 = _message.sender.into();
let recipient: felt252 = _message.recipient.into();

let mut input: Array<ByteData> = array![
ByteData {

value: _message.version.into(), size:
u64_word_size(_message.version.into()).into()

},
ByteData {

value: _message.nonce.into(), size:
u64_word_size(_message.nonce.into()).into()

},
ByteData {

value: _message.origin.into(), size:
u64_word_size(_message.origin.into()).into()

},
ByteData { value: sender.into(), size: ADDRESS_SIZE },
ByteData {

value: _message.destination.into(),
size: u64_word_size(_message.destination.into()).into()

},
ByteData { value: recipient.into(), size: ADDRESS_SIZE },
ByteData {

value: _message.body.size().into(),
size: u64_word_size(_message.body.size().into()).into()

},
];

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 20 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

// ...
}

However, static type variables such as uint32, uint256, and bytes32 take up the
space of the result of the abi.encodePacked function as much as its static size, like
abi.encodePacked(bytes4(uint32(1)), bytes4(uint32(2))) returns 0x0000000100000002, not
0x0102.

Since u{64,256}_word_size returns the minimum byte length to store the given value (e.g.,
u64_word_size(1_u64) == 1_u8), using these functions to encode the static type variables and
implement the abi.encodePacked functionmay result in incorrect behavior for inputs that startwith
the zero byte.

In the case where the 128-bit chunk of the body starts with the zero bytes, for instance, if the chunk
of the body looks like 0x000...(total 16 bytes)...001, theword size functionwill return one and
it will be interpreted as 0x01when it is hashed.

Impact

This bug may result in generating messages incompatible to the ABI of the Hyperlane protocol,
whichmay lead to the failure of message dispatching and processing.

Recommendations

Consider using the static size instead of dynamically calculated size when generatingmessages.

Remediation

This issue has been acknowledged by Pragma, and fixes were implemented in the following com-
mits:

• 44423ee7 ↗
• 90fb0167 ↗
• 83b5cc8a ↗

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 21 of 60

https://github.com/astraly-labs/hyperlane_starknet/commit/44423ee76916c632b1b6130f5c0b582fc7644d56
https://github.com/astraly-labs/hyperlane_starknet/commit/90fb016770bf89a0b5c9dddde8c08b5caa745376
https://github.com/astraly-labs/hyperlane_starknet/commit/83b5cc8a7bca9ce4e7a8125295a8cd3963e15aa0

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

3.5. Message incorrectly includes the size of body

Target message.cairo

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

The format_message function in message.cairo appends the size of the message body before the
message body:

fn format_message(_message: Message) -> (u256, Message) {
let sender: felt252 = _message.sender.into();
let recipient: felt252 = _message.recipient.into();

let mut input: Array<ByteData> = array![
// ...
ByteData {

value: _message.body.size().into(),
size: u64_word_size(_message.body.size().into()).into()

},
];

// ...
}

However, this does not match with the behavior of the Hyperlane protocol, which does not append
the size of the body:

function formatMessage(
uint8 _version,
uint32 _nonce,
uint32 _originDomain,
bytes32 _sender,
uint32 _destinationDomain,
bytes32 _recipient,
bytes calldata _messageBody

) internal pure returns (bytes memory) {
return

abi.encodePacked(
_version,

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 22 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

_nonce,
_originDomain,
_sender,
_destinationDomain,
_recipient,
_messageBody

);
}

Impact

This can lead to incompatibility issues with the Hyperlane protocol, potentially causing message
interpretation errors across different chains and implementations.

Recommendations

Consider removing the size when formatting amessage into bytes.

Remediation

This issue has been acknowledged by Pragma, and a fix was implemented in commit
055424fc ↗.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 23 of 60

https://github.com/astraly-labs/hyperlane_starknet/commit/055424fc5a0922fa254355e7c85e2a361f06970c

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

3.6. Multisig ISM allows duplicated signatures

Target merkleroot_multisig_ism.cairo, messageid_multisig_ism.cairo

Category CodingMistakes Severity High

Likelihood High Impact High

Description

Multisig ISM in the Hyperlane protocol is an Interchain Security module (ISM) that returns
true when the signatures of m-of-n validators are provided, where the threshold and the list
of validators are predetermined. It is implemented in merkleroot_multisig_ism.cairo and mes-
sageid_multisig_ism.cairo:

fn verify(self: @ContractState, _metadata: Bytes, _message: Message,) ->
bool {
assert(_metadata.clone().size() > 0, Errors::EMPTY_METADATA);
let digest = self.digest(_metadata.clone(), _message.clone());
let (validators, threshold) = self.validators_and_threshold(_message);
assert(threshold > 0, Errors::NO_MULTISIG_THRESHOLD_FOR_MESSAGE);
let mut i = 0;
// for each couple (sig_s, sig_r) extracted from the metadata
loop {

if (i == threshold) {
break ();

}
let signature = self.get_signature_at(_metadata.clone(), i);
// we loop on the validators list public key in order to find a match
let mut cur_idx = 0;
let is_signer_in_list = loop {

if (cur_idx == validators.len()) {
break false;

}
let signer = *validators.at(cur_idx);
if bool_is_eth_signature_valid(digest, signature, signer) {

// we found a match
break true;

}
cur_idx += 1;

};
assert(is_signer_in_list, Errors::NO_MATCH_FOR_SIGNATURE);
i += 1;

};

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 24 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

true
}

However, this code allows a signature from one validator to be acceptedmore than once.

Impact

A malicious relayer who can obtain a signature of one validator can make the Multisig ISM return
true by submitting the signature from one validator multiple times.

Recommendations

Consider ensuring that given signatures are not duplicated.

Remediation

This issue has been acknowledged by Pragma, and a fix was implemented in commit
ac648a31 ↗.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 25 of 60

https://github.com/astraly-labs/hyperlane_starknet/commit/ac648a316f86606f6ee5796415625f02829e263b

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

3.7. The protocol fee hook will always be reverted

Target protocol_fee.cairo

Category Business Logic Severity High

Likelihood High Impact High

Description

The protocol fee hook is the hook that collects the protocol fee from the sender of the message.
Specifically, the function post_dispatch transfers the protocol fee from the caller address to itself:

fn _post_dispatch(ref self: ContractState, _metadata: Bytes, _message:
Message) {
let token_dispatcher = IERC20Dispatcher { contract_address:
self.fee_token.read() };
let caller_address = get_caller_address();
let contract_address = get_contract_address();
let user_balance = token_dispatcher.balance_of(caller_address);
assert(user_balance != 0, Errors::INSUFFICIENT_BALANCE);
let protocol_fee = self.protocol_fee.read();
assert(

token_dispatcher.allowance(caller_address, contract_address)
>= protocol_fee,

Errors::INSUFFICIENT_ALLOWANCE
);
token_dispatcher.transfer_from(caller_address, contract_address,
protocol_fee);

}

However, it should be noted that the caller of the function post_dispatch is the Mailbox contract,
which is not intended to pay the fee, causing the fee collection to fail.

Impact

Theprotocol feehookwill be reverted always,whichmaycause a failure in thedispatchingof ames-
sage.

Recommendations

Consider changing the logic of the fee collection, considering the exact flow of the fee.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 26 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

Remediation

This issue has been acknowledged by Pragma, and a fix was implemented in commit
e6388f31 ↗.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 27 of 60

https://github.com/astraly-labs/hyperlane_starknet/commit/e6388f310ef057a3d716796d5283a13282398979

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

3.8. The contractAddress type cannot use the 32-byte addressingmechanism

Target mailbox.cairo, mailboxclient_component.cairo, message.cairo, interfaces.cairo, ag-
gregation.cairo

Category Business Logic Severity High

Likelihood High Impact High

Description

TheHyperlaneprotocol defines thesender and receiver addressasavalueof thebytes32 type. This
is to handle themessages from/to the chain that uses the 32-byte addressingmechanism.

However, we found that the addresses are defined as the type starknet::contractAddress, which
is equivalent to the type felt252. Therefore, the implementation would not be able to handle an
address that does not fit in felt252. For example, this affects the messages from/to the Neutron
chain, which is the Cosmos-based chain with the digital key scheme secp256r1. (Do not confuse
this with the cryptographic algorithm, which this digital key scheme is based on.)

Impact

This limitation prevents the system from supporting recipients using 32-byte addresses, potentially
excluding some portion of users and limiting cross-chain compatibility and interoperability.

Recommendations

Change the type of sender and receiver starknet::contractAddress to u256.

Remediation

This issue has been acknowledged by Pragma, and fixes were implemented in the following com-
mits:

• 8caaeaed ↗

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 28 of 60

https://github.com/astraly-labs/hyperlane_starknet/commit/8caaeaedbde7c65ae61e69b1665a1b3ed8347c0c

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

3.9. Input arguments in the Bytes typemay be invalid

Target mailbox.cairo

Category Business Logic Severity High

Likelihood Medium Impact High

Description

The Bytes type is defined in the third-party package alexandria_bytes:

/// Bytes is a cairo implementation of solidity Bytes in Big-endian.
/// It is a dynamic array of u128, where each element contains 16 bytes.
/// To save cost, the last element MUST be filled fully.
/// That means that every element should and MUST contain 16 bytes.
/// For example, if we have a Bytes with 33 bytes, we will have 3 elements.
/// Theoretically, the bytes look like this:
/// first element: [16 bytes]
/// second element: [16 bytes]
/// third element: [1 byte]
/// But in alexandria bytes, the last element should be padded with zero to make
/// it 16 bytes. So the alexandria bytes look like this:
/// first element: [16 bytes]
/// second element: [16 bytes]
/// third element: [1 byte] + [15 bytes zero padding]

/// Bytes is a dynamic array of u128, where each element contains 16 bytes.
/// - size: the number of bytes in the Bytes
/// - data: the data of the Bytes
#[derive(Drop, Clone, PartialEq, Serde)]
pub struct Bytes {

size: usize,
data: Array<u128>

}

Note that it does not enforce the value of size to be consistent with the content of data. The size
variable can contain a value that does not match with the content of the data variable if it is crafted
by untrusted parties.

Since the behavior of the methods for the invalid Bytes value is undefined, it should be checked if
it is given from the external sources like arguments. However, the functions dispatch and process
do not validate themessages andmetadata that are the Bytes type.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 29 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

Impact

Invalidmessages andmetadata will be forwarded to the hook, ISM, recipient, and off-chain compo-
nent. If these parties do not handle the invalid Bytes value consistently, amalicious usermay exploit
those inconsistent behaviors.

Recommendations

Consider sanitizing or validating the arguments in the Bytes type.

Remediation

This issue has been acknowledged by Pragma, and a fix was implemented in commit
2b38132e ↗.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 30 of 60

https://github.com/astraly-labs/hyperlane_starknet/commit/2b38132e6933e41baf5e4c4132a53dc056703a61

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

3.10. Modules cannot be removed from routing ISM

Target default_fallback_routing_ism.cairo, default_routing_ism.cairo

Category CodingMistakes Severity Medium

Likelihood High Impact Medium

Description

Routing ISM in the Hyperlane protocol is an ISM that redirects the result from the ISM designated
for the origin chain:

fn remove(ref self: ContractState, _domain: u32) {
self.ownable.assert_only_owner();
self._remove(_domain);

}

// ...

fn _remove(ref self: ContractState, _domain: u32) {
let domain_index = match self.find_domain_index(_domain) {

Option::Some(index) => index,
Option::None => {

panic_with_felt252(Errors::DOMAIN_NOT_FOUND);
0

}
};
let next_domain = self.domains.read(_domain);
self.domains.write(domain_index, next_domain);

}

// ...

fn route(self: @ContractState, _message: Message) -> ContractAddress {
self.modules.read(_message.origin)

}

// ...

fn verify(self: @ContractState, _metadata: Bytes, _message: Message) -> bool {
let ism_address = self.route(_message.clone());
let ism_dispatcher = IInterchainSecurityModuleDispatcher {

contract_address: ism_address

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 31 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

};
ism_dispatcher.verify(_metadata, _message)

}

There is the remove function, which should remove the specified routing configuration from itself.
However, it only removes the configuration from the list, and the storage variable modules, which
defines the ISM that is usedwhen amessage is verified, is unchanged.

Impact

This inconsistency can lead to confusion and potential security risks if other parts of the system rely
on themodule function to accurately reflect the current state of domain-modulemappings.

Recommendations

Consider removing themodule from the storage variable modules aswell aswhen the configuration
is removed.

Remediation

This issue has been acknowledged by Pragma, and a fix was implemented in commit
b3147211 ↗.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 32 of 60

https://github.com/astraly-labs/hyperlane_starknet/commit/b31472115f8490750b03cd20eccc407f5a6b7785

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

3.11. Routing ISMwith the fallback configuration does not show fallback behavior

Target default_fallback_routing_ism.cairo

Category CodingMistakes Severity Medium

Likelihood High Impact Medium

Description

The behavior of Routing ISM should be well-defined for the case when the corresponding module
does not exist in the Routing ISM. In this project, there are two implementations of Routing ISM:
domain_routing_ism.cairo and default_fallback_routing_ism.cairo. The former should revert if the
correspondingmodule does not exist, and the latter should fall back into the default ISM of the des-
ignatedMailbox.

fn module(self: @ContractState, _origin: u32) -> ContractAddress {
let module = self.modules.read(_origin);
if (module != contract_address_const::<0>()) {

module
} else {

IMailboxDispatcher { contract_address: self.mailboxclient.mailbox() }
.get_default_ism()

}
}

// ...

fn route(self: @ContractState, _message: Message) -> ContractAddress {
self.modules.read(_message.origin)

}

// ...

fn verify(self: @ContractState, _metadata: Bytes, _message: Message) -> bool {
let ism_address = self.route(_message.clone());
let ism_dispatcher = IInterchainSecurityModuleDispatcher {

contract_address: ism_address
};
ism_dispatcher.verify(_metadata, _message)

}

The fallback behavior is implemented in the function module. However, the route function, which is

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 33 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

used by the verify function, does not use the module function but directly fetches the correspond-
ing module. Because Starknet does not allow calls to the zero address, this will revert, implying the
failure of message verification.

Impact

Thiscan lead tounexpected failures inmessageprocessing, potentiallydisruptingcross-chaincom-
munication for new or unset origin domains.

Recommendations

Consider using the module function in the route function in order to improve the consistency of the
code.

Remediation

This issue has been acknowledged by Pragma, and a fix was implemented in commit
3db11f7e ↗.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 34 of 60

https://github.com/astraly-labs/hyperlane_starknet/commit/3db11f7e720f8f427d66f0db5077f4f99ae90d08

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

3.12. Owner address is not initialized

Target merkle_tree_hook.cairo, validator_announce.cairo

Category CodingMistakes Severity Medium

Likelihood Medium Impact Medium

Description

The contracts merkle_tree_hook.cairo and validator_announce.cairo embed the Ownable compo-
nent. However, the Ownable component is not initialized in the constructor and so the owner ad-
dress would not be configured.

We have found that the owner address is only checked for the features that do not affect the behav-
ior of the contract (i.e., unused) in merkle_tree_hook.cairo. However, validator_announce.cairo only
allows the owner to upgrade the contract; therefore this contract would not be updatable.

Impact

The contracts validator_announce.cairo andmerkle_tree_hook.cairo cannot be upgraded.

Recommendations

Consider initializing the owner address in the constructor for both contracts.

Remediation

This issue has been acknowledged by Pragma, and a fix was implemented in commit
b3b2c967 ↗.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 35 of 60

https://github.com/astraly-labs/hyperlane_starknet/commit/b3b2c967d3d16bceb3107661b20219417b094e97

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

3.13. Incorrect size for fetching branches of theMerkle tree

Target merkle_tree_hook.cairo

Category CodingMistakes Severity Medium

Likelihood Medium Impact Medium

Description

The tree function in the merkle_tree_hook.cairo returns the branches of the stored incremental
Merkle tree. Specifically, it returns the array that is returned from the function self._build_tree,
which semantically returns array![self.tree.read(0), self.tree.read(1), ...,
self.tree.read(self.count.read() - 1)].

However, it shouldbenoted that thenumberofbranches in this incrementalMerkle tree isfixed to32
in this contract and does not growwhen the count variable, which represents the number of leaves,
increases.

Impact

This could lead to unintended behavior and potential confusion for developers interacting with the
contract.

Recommendations

Consider reading the correct number of elements when building the array of branches.

Remediation

This issue has been acknowledged by Pragma, and a fix was implemented in commit
343b3810 ↗.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 36 of 60

https://github.com/astraly-labs/hyperlane_starknet/commit/343b3810be72524e12388af443931c9b5db301cd

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

3.14. Message can be sent multiple times to an untrusted recipient

Target mailbox.cairo

Category CodingMistakes Severity Medium

Likelihood Low Impact Low

Description

The process function in the Mailbox contract is vulnerable to reentrancy through the inter-
chain_security_module function, potentially allowing the samemessage to be sentmultiple times.

Impact

We do not believe this poses a serious security risk because it is unlikely that the inter-
chain_security_module function is implemented in a way triggering the reentrancy. We believe
this finding can be only applied for the recipient that is actively exploiting this behavior; however, it
does not pose a considerable security risk because a malicious recipient may just allow to receive
any uncheckedmessages.

Nonetheless, wewould recommend removing this behavior by recording the history of delivery be-
fore any external interactions (i.e., invoking the interchain_security_module, verify, and handle
functions).

Recommendations

Consider recording the history of delivery before any external interactions.

Remediation

This issue has been acknowledged by Pragma, and a fix was implemented in commit
6ec78842 ↗.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 37 of 60

https://github.com/astraly-labs/hyperlane_starknet/commit/6ec78842a5f8599c2f8894e9a09fc5201ba0c79c

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

3.15. Announcing anewstorage locationoverwrites theprevious storage location

Target validator_announce.cairo

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

The validator creates signatures for the messages they endorse. These signatures should be re-
layed to relayers that are responsible to invoke the process function of the Mailbox. The validator-
announcing contract helps this by allowing validators to announce their storage location (e.g., a S3
bucket) to relayers.

The validator can announce multiple storage locations in the Solidity implementation of the
validator-announcing contract. In validator_announce.cairo, however, announcing a new storage
location overwrites the existing storage location of the validator.

Impact

Thisdivergence fromtheoriginal implementationcould lead topotential inconsistencies in validator
announcements.

Recommendations

Consider implementing the validator-announcing contract in a way that announcing a new storage
location does not overwrite the existing storage location.

Remediation

This issue has been acknowledged by Pragma, and a fix was implemented in commit
2e400899 ↗.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 38 of 60

https://github.com/astraly-labs/hyperlane_starknet/commit/2e400899bd739ea71ca460146f26f71746782e2e

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

3.16. Aggregation ISMmisfunctions if more than 255modules exist

Target aggregation.cairo

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

The following is the verify function of Aggregation ISM:

fn verify(self: @ContractState, _metadata: Bytes, _message: Message,) ->
bool {
let (isms, mut threshold) = self.modules_and_threshold(_message.clone());

assert(threshold != 0, Errors::THRESHOLD_NOT_SET);
let modules = self.build_modules_span();
let mut cur_idx: u8 = 0;
loop {

// ...
if (cur_idx.into() == isms.len()) {

break ();
}
// ...
cur_idx += 1;

};
// ...

}

The type of the cur_idx variable is u8, which can store up to 255. If Aggregation ISM containsmore
than 255modules, the cur_idx variablemay overflow, which will cause this function to revert.

Impact

This could lead to unexpected behavior or function failure in cases with a large number of modules
above 255.

Recommendations

Consider preventing Aggregation ISM from being createdwithmore than 255modules.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 39 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

Remediation

This issue has been acknowledged by Pragma, and a fix was implemented in commit
484fe5e6 ↗.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 40 of 60

https://github.com/astraly-labs/hyperlane_starknet/commit/484fe5e62b2dd157c121a6edc8a85fa69fe72342

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

3.17. ISM configuration ofMailboxComponent is disregarded

Target mailboxclient_component.cairo

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

In theHyperlaneprotocol, a recipientcanspecify the ISMtobeusedbyhaving thepublicmethodin-
terchainSecurityModule(). The Solidity implementation of MailboxClient contract allows a con-
tract to specify the ISM through providing the getter/setter functions for ISM:

abstract contract MailboxClient is OwnableUpgradeable {
// ...

IInterchainSecurityModule public interchainSecurityModule;

// ...

function setInterchainSecurityModule(
address _module

) public onlyContractOrNull(_module) onlyOwner {
interchainSecurityModule = IInterchainSecurityModule(_module);

}

// ...
}

Themailboxclient_component.cairo also has getter/setter functions for its ISM:

#[starknet::component]
pub mod MailboxclientComponent {

// ...

#[storage]
struct Storage {

// ...
interchain_security_module: ContractAddress,

}

// ...

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 41 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

#[embeddable_as(MailboxClientImpl)]
impl MailboxClient<

// ...
> of IMailboxClient<ComponentState<TContractState>> {

// ...

fn set_interchain_security_module(
ref self: ComponentState<TContractState>, _module: ContractAddress

) {
let ownable_comp = get_dep_component!(@self, Owner);
ownable_comp.assert_only_owner();
assert(_module != contract_address_const::<0>(),

Errors::ADDRESS_CANNOT_BE_ZERO);
self.interchain_security_module.write(_module);

}

// ...

fn get_interchain_security_module(
self: @ComponentState<TContractState>

) -> ContractAddress {
self.interchain_security_module.read()

}

// ...
}

// ...
}

It should be noted that the storage variable does not automatically create the getter method for the
variable. In this contract, the function get_interchain_security_module() is the getter method.

However, the method the Mailbox utilizes to fetch the ISM of the recipient is the inter-
chain_security_module(), not the get_interchain_security_module().

Impact

MailboxClient has getter/setter functions about ISM, which do not affect the logic of contract.

While this does not pose a direct security risk, this issue can still lead to confusion, potential misuse
of the contracts, and inefficient code.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 42 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

Recommendations

Consider renaming the method get_interchain_security_module to inter-
chain_security_module in order to provide the expected functionality.

Remediation

This issue has been acknowledged by Pragma, and a fix was implemented in commit
cc203103 ↗.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 43 of 60

https://github.com/astraly-labs/hyperlane_starknet/commit/cc2031031983dffe6aa815d847b0be353d45461c

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

3.18. Unclear behavior of the function set_modules

Target aggregation.cairo

Category CodingMistakes Severity Low

Likelihood Medium Impact Low

Description

The following is the code of the Aggregation ISM:

fn set_modules(ref self: ContractState, _modules: Span<ContractAddress>) {
self.ownable.assert_only_owner();
assert(!self.are_modules_stored(_modules),
Errors::MODULES_ALREADY_STORED);
let mut last_module = self.find_last_module();
let mut cur_idx = 0;
loop {

if (cur_idx == _modules.len()) {
break ();

}
let module = *_modules.at(cur_idx);
assert(

module != contract_address_const::<0>(),
Errors::MODULE_ADDRESS_CANNOT_BE_NULL

);
self.modules.write(last_module, module);
cur_idx += 1;
last_module = module;

}
}

This function appends the given modules to the existing list of modules; not replacing the existing
list of modules.

Impact

This inconsistency between the function name and its behavior could lead to potential misuse.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 44 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

Recommendations

Consider changing the behavior of this function or renaming this function to match the function
name to its behavior.

Remediation

This issue has been acknowledged by Pragma, and a fix was implemented in commit
6ef5aa2e ↗.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 45 of 60

https://github.com/astraly-labs/hyperlane_starknet/commit/6ef5aa2e0fd1b3491e27f37e18e08bec35c36d00

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

3.19. Incorrect size of StoreFelt252Array

Target store_arrays.cairo

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

The store_arrays.cairo implements a way to store the Array<felt252> as a storage variable:

pub impl StoreFelt252Array of Store<Array<felt252>> {
fn read(address_domain: u32, base: StorageBaseAddress) ->
SyscallResult<Array<felt252>> {

StoreFelt252Array::read_at_offset(address_domain, base, 0)
}

fn write(
address_domain: u32, base: StorageBaseAddress, value: Array<felt252>

) -> SyscallResult<()> {
StoreFelt252Array::write_at_offset(address_domain, base, 0, value)

}

// ...

fn size() -> u8 {
1

}
}

Note that thesize function returns 1. However, this function should return255, since this implemen-
tationmay utilize up to 255 slots for its logic.

Impact

An array can be improperly stored in the storage, whichmay break the integrity of the stored data.

We believe this code is only used by validator_announce.cairo, which does not directly affect the
logic of the rest of the contracts.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 46 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

Recommendations

Consider modifying the size function to return 255 instead of 1.

Remediation

This issue has been acknowledged by Pragma, and a fix was implemented in commit
5ec83ab7 ↗.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 47 of 60

https://github.com/astraly-labs/hyperlane_starknet/commit/5ec83ab7695ce6b3263b367ee7ae4241370f0946

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

3.20. Unnecessary class function for signature conversion

Target validator_announce.cairo

Category CodeMaturity Severity Informational

Likelihood N/A Impact Informational

Description

The convert_to_signature function is defined as a class function, but it does not interact with the
contract state.

Impact

This issue does not pose a security risk but may lead to confusion or suboptimal code organization.

Recommendations

The convert_to_signature function can be defined as a free function outside the class structure.
If kept within the class, adding self as a parameter makes it consistent with other class methods,
though this is not strictly necessary for its functionality.

Remediation

This issue has been acknowledged by Pragma, and a fix was implemented in commit
fcb0a419 ↗.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 48 of 60

https://github.com/astraly-labs/hyperlane_starknet/commit/fcb0a41925db728127d0001663296ccb07e0a942

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

3.21. Lack of comprehensive test suite

Target N/A

Category CodeMaturity Severity Informational

Likelihood N/A Impact Informational

Description

During this audit,weobservedanumberof severefindings that affect thecore logicof thecodebase.
Some of these findings could result in the failure of working on the production environment if not
fixed, even if nomalicious attack is assumed.

When building a complex contract ecosystemwith multiple moving parts and dependencies, com-
prehensive testing is essential. This includes testing for both positive and negative scenarios. Pos-
itive tests should verify that each function's side effect is as expected, while negative tests should
cover every revert, preferably in every logical branch.

The test coverage for this project should be expanded to includemore than just surface-level func-
tions. It is important to test the invariants required for ensuring security.

Good test coverage hasmultiple effects.

• It finds bugs and design flaws early (preaudit or prerelease).
• It gives insight into areas for optimization (e.g., gas cost).
• It displays codematurity.
• It bolsters customer trust in your product.
• It improves understanding of how the code functions, integrates, and operates — for de-
velopers and auditors alike.

• It increases development velocity long-term.

The last point seems contradictory, given the time investment to create and maintain tests. To ex-
pandupon that, tests helpdevelopers trust their ownchanges. It is difficult to know if a code refactor
— or even just a small one-line fix—breaks something if there are no tests. This is especially true for
new developers or those returning to the code after a prolonged absence. Tests have your back
here. They are an indicator that the existing functionalitymost likely was not broken by your change
to the code.

Impact

Writingcomprehensive test suites canpreventmany logical errors existing in thecodebase. Finding
3.1. ↗ could have been discovered and remediated before this audit if it was attempted to test the
behavior of Aggregation ISM that skips ISMswithout metadata.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 49 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

It is also important to write comprehensive negative tests as well as positive tests. This helps not
only uncover complicated issues but also understand the exact behavior of the codebase. Finding
3.3. ↗ discovers the straightforward counterexample of the premature optimization, and we believe
that writing negative tests would have found the same counterexample and prevented this issue in
advance.

We strongly recommendPragma to strive for 100%code coverage. It has come to our attention that
some trivial functions, such as upgrade(), do not have corresponding tests. Finding 3.12. ↗ is a case
where achieving 100% code coverage could have discovered the issue.

We also recommend enhancing the integration tests because issues affecting the interactions be-
tween contracts cannot be easily discovered with unit tests. For instance, Finding 3.7. ↗ discovers
the design error of the fee-forwarding mechanism, and we believe it could have been discovered
with proper integration tests, including the protocol-fee hook contract.

Recommendations

Consider building a rigorous test suite that includes all functions andpossibly attainable edgecases
for the Hyperlane protocol.

Remediation

This issue has been acknowledged by Pragma.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 50 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

4. Discussion The purpose of this section is to document miscellaneous observations that we made during the
assessment. These discussion notes are not necessarily security related and do not convey thatwe
are suggesting a code change.

4.1. Samemessage can be inserted into theMerkle tree hookmultiple times

Thesamemessagecanbe inserted into theMerkle treehookmultiple times, as longas it is the latest
dispatched message. We discussed if this behavior has been acknowledged and is acceptable on
their side, becausewewere not aware of theway the off-chain componentswould interact with the
Merkle tree hook contract.

The Hyperlane team has acknowledged that this is acceptable behavior and the off-chain compo-
nent is responsible for handling this case correctly.

4.2. Noncemay overflow

TheMailboxcontract has thenoncevariable,whichshouldbe incrementedperdispatchedmessage
and inserted in all dispatchedmessages.

The typeof thenoncevariable isu32, which isnot infeasible tobeoverflowed. Anattackermayspend
a substantial amount of gas in order to increment the nonce to

232− 1

which will disable the dispatch function.

Pragma has acknowledged the issue and decided to leave the nonce as the u32 type as of now. We
also agree with their approach, because the size of the nonce is defined in the Hyperlane proto-
col and the consensus of Hyperlane protocol implementations should be required when theymake
changes.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 51 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

5. ThreatModel This provides a full threat model description for various functions. As time permitted, we analyzed
each function in thecontractsandcreatedawritten threatmodel for somecritical functions. A threat
model documents a given function’s externally controllable inputs and how an attacker could lever-
age each input to cause harm.

Not all functions in the audit scope may have been modeled. The absence of a threat model in this
section does not necessarily suggest that a function is safe.

5.1. Message

The message is the core data structure used by the Hyperlane protocol. It is a packed data struc-
ture that contains all the information needed to route a message from one domain to another. The
structure of themessage is as follows:

#[derive(Serde, starknet::Store, Drop, Clone)]
pub struct Message {

pub version: u8,
pub nonce: u32,
pub origin: u32,
pub sender: u256,
pub destination: u32,
pub recipient: u256,
pub body: Bytes,

}

Therewas an issue that the sender and the recipientwere the ContractAddress type, which is
felt252, so if the sender or the recipient is using the 32-bytes addressing mechanism, those
will not be a valid address. See Finding 3.8. ↗ for more details.

5.2. Mailbox

Themailbox is the entry point for developers to send and receivemessages from.

mailbox contract

The mailbox contract handles message dispatching, processing, and security checks for cross-
chain communication.

Key functions for mailbox are as follows:

• dispatch— sendsmessages to the destination domain and recipient
• process— receives and processes incomingmessages

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 52 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

• quote_dispatch—computesquote for dispatchingamessage to thedestinationdomain
and recipient

• recipient_ism—determines the ISM for a recipient

The dispatch function is to sendmessages to the destination domain and recipient. The key steps
of the function are as below:

1. Build themessage using the destination domain, sender, and provided details.

2. Generate a uniquemessage ID.

3. Emit Dispatch and DispatchId events.

4. Handle fee collection and distribution:

• Calculate fees for required and default hooks.
• Check if a sufficient fee is provided.
• Verify the sender's balance and allowance.
• Transfer fees to the respective hooks.

5. Execute post-dispatch hooks.

The process function is to receive and process incoming messages from other sources. The key
steps of the function are as below:

1. Verify themessage version and destination.

2. Check if themessage has already been delivered.

3. Record the delivery in storage.

4. Determine the recipient's ISM.

5. Emit Process and ProcessId events.

6. Verify themessage using the recipient's ISM.

7. Call the recipient's handle function with themessage details.

mailboxclient contract

This contract serves as a proxy for theMailbox client in the Hyperlane cross-chain communication
system. It integratesMailboxclientComponent, OwnableComponent, andUpgradeableComponent
to providemailbox functionality with ownershipmanagement and upgrade capabilities.

The constructor function initializes the contract withmailbox address and owner, and the upgrade
function allows the owner to upgrade the contract implementation.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 53 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

mailboxclient_component contract

TheMailboxclientComponent isacrucialpartof theHyperlanecross-chainmessagingsystem,pro-
viding core functionality for managingmailbox interactions, hooks, and ISMs.

MailboxClient exposes functions that allow subclasses to easily send messages to the Mailbox via
themailbox storage variable and permissionmessage delivery via the onlyMailboxmodifier.

Key functions for mailboxclient_component are as follows:

• set_hook— sets the custom hook address
• set_interchain_security_module— sets the ISM address
• _MailboxClient_initialize— initializes themailbox client configuration
• _dispatch—dispatches amessage to a destination domain and recipient
• quote_dispatch—computesquote for dispatchingamessage to thedestinationdomain
and recipient

• initialize— initializes themailbox client with amailbox address

5.3. Hooks

Post-dispatch hooks allow developers to configure additional origin chain behavior with message
content dispatched via the Mailbox. This allows developers to integrate third-party/native bridges,
make additional chain commitments, or require custom fees all while maintaining a consistent
single-call Mailbox interface.

protocol_fee contract

This contract implements a post-dispatch hook for collecting protocol fees in the Hyperlane cross-
chainmessaging system. It manages fee collection, beneficiary settings, and provides functionality
for fee quotes and collection.

Key functions for protocol_fee are as follows:

• post_dispatch—processes the protocol fee after message dispatch
• quote_dispatch—provides a quote for the protocol fee
• set_protocol_fee— sets the protocol fee and can be called by the owner
• set_beneficiary—sets the beneficiary of collected fees and canbe called by the owner
• collect_protocol_fees— transfers collected fees to the beneficiary

merkle_tree_hook contract

This contract implements a post-dispatch hook for maintaining a Merkle tree of dispatched mes-
sages in the Hyperlane cross-chain messaging system. It provides functionality for inserting mes-
sages into the tree, calculating roots, andmanaging the tree structure.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 54 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

Key functions for merkle_tree_hook are as follows:

• post_dispatch — processes the message after dispatch by inserting it into the Merkle
tree

• quote_dispatch— provides a quote for the hook operation (returns 0 in this implemen-
tation)

• _insert— inserts a new node into theMerkle tree
• _root—calculates the current root of theMerkle tree
• _branch_root—calculates the root given a leaf, branch, and index

The samemessage can be inserted into theMerkle tree hookmultiple times, as long as it is the
latest dispatched message. We discussed with the Pragma team and got the response that
this is the same with the Solidity implementation too and it is acceptable behavior. Even if the
message is inserted multiple times, it will only be delivered once. See Discussion point 4.1. ↗
for more details.

5.4. Interchain Security modules

Hyperlane is secured by ISMs. ISMs are smart contracts that are responsible for verifying that in-
terchainmessages being delivered on the destination chain were actually sent on the origin chain.

Hyperlane developers can optionally override the Mailbox's default ISM by specifying an
application-specific ISM,which theycanconfigure, compose, andcustomizeaccording to theneeds
of their application.

The primary function that ISMsmust implement is verify(). TheMailbox will call IInterchainSe-
curityModule.verify() before delivering amessage to its recipient. If verify() reverts or returns
false, themessagewill not be delivered.

The verify() function takes two parameters:

1. _metadata. This consists of arbitrary bytes provided by Relayer. Typically, these bytes
are specific to the ISM. For example, for Multisig ISM, _metadatamust include validator
signatures.

2. _message. This consistsof theHyperlanemessagebeingverified. ISMscanuse this to in-
spect details about themessage being verified. For example, Multisig ISM could change
validator sets based on the origin chain of themessage.

The following shows a simplified sequence diagram of an interchain message being verified and
delivered on the destination chain.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 55 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

Multisig ISM

The Multisig ISM is one of the most commonly used ISM types. These ISMs verify that m-of-n val-
idators have attested to the validity of a particular interchainmessage. It should be implemented to
check if the metadata provided to verify satisfies a quorum of signatures from a set of configured
validators.

message_id_multisig contract

This contract implements amulti-sig ISM for message verification in a cross-chain communication
system. It manages a set of validators and a threshold for message verification.

The structure of the message_id_multisigmetadata is as follows:

• [0: 32] OriginMerkle tree address
• [32: 64] Signed checkpoint root
• [64: 68] Signed checkpoint index
• [68:????] Validator signatures (length := threshold * 65)

In order to verify themessage, the following checksmust pass:

1. Themetadatamust not be empty.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 56 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

2. The calculated digest must match themessage andmetadata.

3. The number of valid signaturesmust meet or exceed the threshold.

4. Each signaturemust be from a recognized validator in the list.

5. The thresholdmust be greater than zero.

merkleroot_multisig contract

This contract implements aMerkle root–basedmulti-sig ISM for verifying cross-chainmessages. It
manages a set of validators and a threshold formessage verification, incorporatingMerkle proofs in
the verification process.

The structure of the merkleroot_multisigmetadata is as follows:

• [0: 32] OriginMerkle tree address
• [32: 36] Index of message ID inMerkle tree
• [36: 68] Signed checkpoint message ID
• [68:1092]Merkle proof
• [1092:1096] Signed checkpoint index (computed from proof and index)
• [1096:????] Validator signatures (length := threshold * 65)

In order to verify themessage, the following checksmust pass:

1. Themetadatamust not be empty.

2. Themessage index in themetadatamust be valid (not greater than the signed index).

3. TheMerkle proof in themetadatamust be valid for the givenmessage.

4. The calculated digest, including theMerkle root, must be correct.

5. The number of valid signaturesmust meet or exceed the threshold.

6. Each signaturemust be from a recognized validator in the list.

7. The thresholdmust be greater than zero.

Routing ISM

Developers can use a Routing ISM to delegate message verification to a different ISM. This allows
developers to change security models based onmessage content or application context.

This ISM simply switches security models depending on the origin chain of the message. A simple
use case for this is to use differentMultisig ISM validator sets for each chain.

Eventually, you could imagine aDomainRoutingIsm routing to different light-client–based ISMs, de-
pending on the type of consensus protocol used on the origin chain.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 57 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

Aggregation ISM

Developers can use an Aggregation ISM to combine security from multiple ISMs. Simply put, an
Aggregation ISM requires that m-of-n ISMs verify a particular interchainmessage.

Developers can configure, for each origin chain, a set of n ISMs, and the number of ISMs needed to
verify amessage.

Aggregation ISMs can aggregate the security of any ISMs. For example, users can deploy aMultisig
ISM with their own validator set and deploy an Aggregation ISM that aggregates that ISM with the
Hyperlane default ISM.

The structure of themerkleroot_multisig metadata is as follows:

• [????:????] Metadata start/end uint32 ranges, packed as uint64
• [????:????] ISMmetadata, packed encoding

There was an issue that the valid message could be unverifiable in the verify function. See
Finding 3.1. ↗ for more details.

In order to verify themessage, the following checksmust pass:

1. The thresholdmust be set and not zero.

2. The number of modulesmust be sufficient to potentially meet the threshold.

3. Eachmodule in the list must be checked if it has correspondingmetadata.

4. For modules withmetadata, their individual verify functionmust return true.

5. The number of successful verificationsmust reach the threshold.

6. Nomodule verification should fail during the process.

7. The verification process must continue until the threshold is met or all modules are
checked.

8. After checkingallmodules, thenumberof successful verificationsmust equal the thresh-
old.

9. No assertions should fail or errors be thrown during the entire process.

noop ISM

The verify function always returns true so that all verifications will succeed.

fn verify(self: @ContractState, _metadata: Bytes, _message: Message) -> bool {
true

}

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 58 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

Pausable ISM

The verify function returns true if it is not paused by the owner.

fn verify(self: @ContractState, _metadata: Bytes, _message: Message) -> bool {
self.pausable.assert_not_paused();
true

}

Validator Announcing contract

The Validators announce their signature storage location so that the relayer can fetch and verify
their signatures.

The announce function in the contract handles a few steps to announce a validator-signature
storage location. This was different from the original Solidity implementation, but it has been
acknowledged. See Finding 3.15. ↗ for more details.

1. It converts input parameters and generates a replay_id using a Poseidon hash.

2. It checks for replay protection to prevent duplicate announcements.

3. It calculates the announcement digest and verifies the provided signature.

4. It adds the validator to the list if new or updates existing validator information.

5. It stores the new storage location for the validator and updates related counts.

6. Reverts if the announcement already occurred or if the given signature is invalid.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 59 of 60

DR
AF
T

Hyperlane Starknet Smart Contract Security Assessment July 9, 2024

6. Assessment Results At the time of our assessment, the reviewed codewas not deployed to the StarknetMainnet.

Duringourassessmenton thescopedHyperlaneStarknetcontracts,wediscovered21findings. Five
critical issues were found. Four were of high impact, four were of medium impact, six were of low
impact, and the remaining findings were informational in nature.

6.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommendmultiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, andwe encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2024 ← Back to Contents Rev. a93ec6c8 Page 60 of 60

	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Hyperlane Starknet
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Aggregation ISM cannot skip ISMs
	Incorrect splitting of a number in Keccak implementation
	Improper optimization in Keccak implementation
	Dynamic variable size for hash parameters
	Message incorrectly includes the size of body
	Multisig ISM allows duplicated signatures
	The protocol fee hook will always be reverted
	The contractAddress type cannot use the 32-byte addressing mechanism
	Input arguments in the Bytes type may be invalid
	Modules cannot be removed from routing ISM
	Routing ISM with the fallback configuration does not show fallback behavior
	Owner address is not initialized
	Incorrect size for fetching branches of the Merkle tree
	Message can be sent multiple times to an untrusted recipient
	Announcing a new storage location overwrites the previous storage location
	Aggregation ISM misfunctions if more than 255 modules exist
	ISM configuration of MailboxComponent is disregarded
	Unclear behavior of the function set_modules
	Incorrect size of StoreFelt252Array
	Unnecessary class function for signature conversion
	Lack of comprehensive test suite

	Discussion
	Same message can be inserted into the Merkle tree hook multiple times
	Nonce may overflow

	Threat Model
	Message
	Mailbox
	Hooks
	Interchain Security modules

	Assessment Results
	Disclaimer

